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Project Overview 

OctaPath is the design and implementation of a complete 8-bit microprocessor data 

path using CMOS technology and the Cadence VLSI design suite. This project, undertaken as 

part of the ECE 813 design course at Michigan State University, leverages the foundational 

design principles developed in earlier lab exercises and expands them into a cohesive system 

architecture composed of a register file, arithmetic logic unit (ALU), and barrel shifter. At its 

core, this design realizes a functional pipeline for arithmetic, logical, and bitwise operations 

with fully integrated read and write access to internal memory cells. The datapath follows the 

reference architecture shown in Figure 1. Functional blocks communicate via control signals 

organized along vertically routed control lines, while data propagates throughout the datapath 

from block to block. Two non-overlapping clock signals, clk1 and clk2, synchronize the 

timing of read and write phases across the register file and ALU. 

 

 
Figure 1. Structure of microprocessor data path to be designed 

 

At the foundational level, the datapath is constructed from a library of primitive logic 

gates (INV, NAND, XOR, NOR, MUX21), each implemented with minimum-sized 

transistors to achieve compact layouts and reduced delay. These gates form the basis of 

higher-level modules such as the ALU, shifter, and memory control circuitry. The Arithmetic 

Logic Unit (ALU) incorporates a Manchester carry look-ahead adder as the central 

component, chosen for its improved propagation delay characteristics over ripple carry 

structures. This unit supports a broad range of operations, including logic functions (NOR, 

XOR, NAND, NOT) and arithmetic functions (increment, decrement, add, subtract). These 

functions are controlled via encoded opcodes using a 3-bit control scheme, with a careful 

encoding to minimize logic complexity. Complementing the ALU is a logarithmic barrel 



shifter, enabling data manipulation operations such as logical shifts and rotates in both 

directions. While not strictly required by the project specification, the inclusion of rotate 

operations provides enhanced bit manipulation capabilities that could prove valuable in 

numerous scenarios. The register file is implemented as an 8×8 SRAM array utilizing 

6-transistor (6T) cells. It features two simultaneous 8-bit read ports and one 8-bit write port, 

allowing dual-operand ALU operations within a single read cycle. The write path supports 

input either from the ALU or an external memory bus via a multiplexer and an input latch. 

Clocked synchronization and enable gating ensure proper timing between operations, with 

high-impedance outputs enforced during write cycles to prevent bus contention. 

In summary, OctaPath represents a comprehensive and custom-built datapath solution, 

distinguished by its modularity, timing-aware layout, and extended functional capability. The 

design effort reflects a holistic integration of digital logic, VLSI layout strategies, and 

system-level architecture, culminating in a datapath that meets the requirements for an 8-bit 

CMOS processor. 

 

Design Methodology 

The development of OctaPath followed a structured, bottom-up design methodology 

rooted in hierarchical abstraction and progressive integration. The approach focused on 

achieving correct functionality at each design stage while continuously optimizing for layout 

area, logical delay, and routing compatibility. Early-stage planning was critical to defining a 

scalable bit-pitch, signal routing strategy, and modular design flow, all of which underpinned 

the project’s successful implementation. At the outset, a complete library of primitive CMOS 

logic gates was designed, including inverters, 2-input NAND, NOR, XOR, and multiplexers. 

Each gate was constructed using minimum-sized transistors, prioritizing compact area while 

maintaining acceptable drive strength and noise margins. The layouts for these gates adhered 

to a common height and consistent pin placement to ensure reusability and vertical pitch 

matching across higher-order modules. DRC and LVS verification was performed at this level 

before their instantiation into more complex cells. 

The first major composite module designed was the Manchester carry look-ahead 

adder, the central computational component of the ALU. The adder was constructed by 

vertically stacking two 4-bit Manchester carry look-ahead adders, with each 4-bit cell 

comprising its sum, propagate/generate, and carry computation circuits. This architectural 

arrangement allowed for improved visualization of carry propagation and facilitated layout 



debugging during simulation and physical verification. Care was taken to route internal 

signals efficiently. All carry control logic was implemented hierarchically and validated 

through functional simulation before layout. Following the adder, the ALU control logic was 

designed to support encoded selection signals that correspond to a well-defined opcode truth 

table. Logical and arithmetic operations were integrated via multiplexing at the ALU output, 

controlled by the decoded function inputs.  

The barrel shifter was implemented using a logarithmic architecture, enabling single- 

and multi-bit shifts and rotations in both directions. The design employed a cascade of 2:1 

multiplexers organized in a three-stage shift network, each stage conditioned on one bit of the 

shift amount. The register file was implemented as a dual-read, single-write 8×8 SRAM 

array. The core memory cell utilized a 6T configuration, chosen for its density. Peripheral 

circuits, including address decoders and column circuitry, were developed independently and 

integrated into a single memory block. A multiplexer at the write port allowed data selection 

from either the ALU or the external memory bus, while input and output latches ensured 

correct timing across clock domains. The enable signal was carefully integrated into both 

address decoding and output gating logic to ensure correct behavior during read and write 

cycles, with high-impedance states enforced during non-enabled periods. 

Throughout the design process, hierarchical schematics and modular layout discipline 

were maintained. Each subcomponent was functionally simulated in isolation and verified 

post-layout against the extracted netlist. Design rule compliance (DRC) and 

layout-versus-schematic (LVS) checks were conducted iteratively at each level to ensure 

correctness and consistency. The integration phase brought together all verified modules into 

the full 8-bit datapath. Final checks included full functional simulation of the complete 

datapath and characterization of delay for the slowest logic paths. Thus, the design 

methodology prioritized correctness, modularity, and optimization at every stage, reflecting a 

deliberate and methodical approach to complex digital system design in VLSI. 

 

Design and Results  

​ The foundation of the datapath was established through the construction of a library 

of primitive CMOS logic gates, together with a few other basic components. These designs 

focused on layout efficiency and reusability in higher-level circuitry. At this stage, designs 

followed a schematic-to-layout flow outlined earlier in the course. The first gates to be 

developed were a 1-bit inverter gate, a 2-input NAND gate, a 2-input XOR gate, a 2-input 

NOR gate, and a 2:1 multiplexer. Of these, the most challenging and best example of the 



design procedure followed was the XOR gate. To simplify the design, care was taken to 

ensure the gate was implemented without splitting the active regions for either the pMOS or 

nMOS transistors, as shown in Figure 2. This cell maintained a 21 μm pitch, a standard held 

across all logic gates, and a width of 16.8 μm. On top of these basic logic gates, a few more 

compound logic gates were developed to make later development easier. Firstly, non-inverted 

2-input logic gates (AND2 and OR2) were developed for use in both the masking circuitry of 

the barrel shifter and the carry generation circuits of the Manchester adder. On top of these, 

8-bit logic gates, together with an 8-bit 2:1 multiplexer, were developed for use in the ALU. 

These were made by chaining together several of their 1-bit counterparts in parallel. 

 

 

Figure 2. Layout of a 2-input XOR gate 

 

​ The first component to be built using these primitive gates was the 8-bit Manchester 

Carry Generation Carry Lookahead adder, which was made by chaining together two smaller 

4-bit Manchester Carry Generation Carry Lookahead adders, each of which implemented its 

own Manchester adder cell and Carry Lookahead cell. Looking at the Carry Lookahead cells, 

these work by generating a group generate and propagate signal for given 4-bit blocks and 

using these to generate a cout signal. While the generate and propagate signals could instead 

be taken from the Manchester adder cell instead of being regenerated here, the chosen 



approach allows modular testing and isolated debugging of the carry logic without 

dependency on the correctness of the arithmetic unit, thereby simplifying verification and 

layout reuse.  Similarly, the Manchester adder is made by chaining together 4 1-bit 

Manchester adders, inverting the cin bit into the first one as well as the cout bit out of the last 

one. With this, we end up with the layout shown in Figure 3 for our 8-bit Manchester Carry 

Generation Lookahead adder. 

 

 
Figure 3. 8-bit Manchester Carry Generation Lookahead adder (hierarchical and full view) 

 
The adder, together with careful use of op-codes and some circuitry to process the 

input B, formed the backbone of the ALU arithmetic unit, which implemented some of the 

operations shown in Table 1. The S1 and S2 bits were used to select what value of B would be 

chosen based on the operation being performed, which can also be seen in Table 1. S2 was 

also used to provide the cin bit of the adder. The circuit to obtain the appropriate B output 

simply consisted of an 8-bit 4:1 multiplexer, which took as input all the values of B shown 

below. To implement the logic operations of the ALU, an 8-bit 4:1 multiplexer was used to 

select the appropriate output from the 4 8-bit logic gates. The S0 bit then served as a way for 

the selection of logic or arithmetic output. Using this selection logic, the ALU could be 

implemented using a single adder for the arithmetic unit, together with a single logic unit. For 

testing, all ALU operations were simulated with inputs A = 1111 1000 and B = 0001 1111. 



With these, the slowest logic operation was found to be the XOR function while the slowest 

arithmetic operation was found to be the subtraction operation. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Table 1. ALU operations and their opcode 

 
​ The next component to be made for the datapath was the SRAM. Based on the design 

requirements, the SRAM was to have two read ports and one write port. Thus, the 6T cell 

design as selected, as it could be used with two read ports, by reading from both bit and  , 𝑏𝑖𝑡

and one write port, by writing on both bit and . Furthermore, this cell provided greater 𝑏𝑖𝑡

density than the alternative 8T cell. To support stable read and write operations, a bitline 

conditioning circuit was designed that utilized the clock signal to precharge the bitlines and 

control the timing of wordline activation. Instead of reusing existing transmission gate cells 

for the column circuitry, the design was redone at the transistor level to ensure greater 

density. This allowed us to obtain a column circuitry cell with dimensions 26.4 μm by 36.4 

μm. The same mantra was followed for the address decoder layout, allowing us to obtain a 

cell with dimensions 65.4 μm by 50.7 μm. Integrating all these components into a complete 

SRAM unit, transmission gates were used to determine what values should be written to the 

address bits of port B. When the rw signal is 0, indicating a read operation, transmission gates 

connect the address bits of port B to those being written by a user. When the rw signal is 

instead 1, indicating a write operation, the address bits of port B are connected to those of 

port A because, as previously mentioned, the 6T cell requires us to write on both bit and  𝑏𝑖𝑡

to write a value to the cell. Shown in Figure 4 is the completed schematic of the entire 

S0 S1 S2 B value Operation 

0 0 0 B A + B 

0 1 0 0000 0001 INCREMENT A 

0 0 1 1111 1110 DECREMENT A 

0 1 1 ~B A - B 

1 0 0 N/A INV 

1 0 1 B A XOR B 

1 1 0 B A NAND B 

1 1 1 B A NOR B 



SRAM. The performance of the SRAM unit was tested over two full clock cycles, writing 

0000 0000 to address 000 and reading it from port A during the first cycle, and writing 1111 

1111 to address 111 on the second cycle and reading it from port A, while port B reads the 

value at 000. With this simulation, we find the propagation on port B to be approximately 

40.5178 ns while the propagation on port A is approximately 40.4487 ns. 

 

 
Figure 4. 8x8 SRAM Schematic 

 

The last component of the SRAM to be tested was the logarithmic barrel shifter. To allow for 

both shift and rotate operations, the shifter was made using 3 key components: a shifter that rotates 

8-bit inputs by 1 through 7 left or right, a decoder to give the mask bits for shifting, and some circuitry 

to apply the mask to the rotated bits in the case of a logical shift operation. Let us look at these 

constituent parts individually. Ignoring the data it takes in, the shifter takes as input 3 bits (k0, k1, k2) 

to determine the extent of the rotation and a single bit to determine whether it is a rotation to the left 

or the right. It consists of a preshift level followed by three rotation stages, with each stage’s shift 

being determined by applying the exclusive OR operation to the level’s input k and the left shift bit 

left. The decoder takes as input the 3 shifting bits (k0, k1, k2)  and decodes this thermometer code to 

produce the appropriate masking bits. The masking circuitry takes these masking bits and applies 

them to our shift operations if they are not a rotation. The mask application circuitry for a singular bit 

is shown in Figure 5. As expected, it takes as input shift (to determine wether this is a rotate or shift 

operation), left (to determine whether this is a shift left or right), right (the right mask), left (the left 

mask), and rot (the bit obtained from a rotation). The performance of the shifter was tested by 

providing a data input of 1111 0000 and rotating it right by 2, and then changing the input to 0000  

1111. With this simulation, we find the propagation to be approximately 25.653 ns. 

​ The final design could not be completed on time due to unforeseen circumstances. A list of all 

the cells created as part of this design, however, with appropriate timing analysis included, is shown in 

Table 2. Furthermore, the complete layout for the shifter, together with partial layout completed for 



the ALU, are shown in Figures 4, 5, and 6. The slowest propagation delay of the data path (through 

the ALU and the shifter), found through functional simulation, was approximately 36.526 ns. The 

slowest logic function was the XOR function, with a propagation delay of approximately 15 ns. The 

slowest arithmetic function was the subtract operation, with a propagation delay of 21.981 ns. This 

delay is obtained through functional simulation, as a layout putting together the ALU and shifter was 

not completed. We cannot provide a complete physical area for the data path layout or the total 

number of transistors required, as individual components were not put together to form a complete 

data path 

 

 

Figure 4. A complete shifter layout 

 



 

Figure 5. Logic unit of the ALU  

 

 

Figure 6. Arithmetic unit of the ALU 

 

Conclusions 

The design of OctaPath, a complete 8-bit microprocessor data path, has offered a 

comprehensive and instructive exploration of hierarchical VLSI system design using CMOS 

technology. By incrementally developing and integrating key subsystems, including the 

arithmetic logic unit (ALU), barrel shifter, and dual-read, single-write SRAM register file, the 

project demonstrated how lower-level logic primitives can be composed into higher-level 

architectural constructs that support a wide range of computational tasks. The final design 



meets all specified functional requirements, including arithmetic and logical operations, 

multi-bit shifting and rotation, and synchronized memory access. The design methodology 

employed emphasized careful planning, modular construction, and rigorous post-layout 

verification. Layout optimization, pin alignment, and cell reuse were central to maintaining 

consistency and achieving integration across components. The inclusion of bidirectional 

rotation in the shifter, while beyond the minimum project requirements, added functional 

richness and illustrated the system’s extensibility. 

Nevertheless, the project was not without its limitations. Due to external scheduling 

conflicts with other coursework, final layout integration of the complete datapath and the 

ALU could not be completed. Despite this, all foundational and composite cells were 

successfully implemented, verified through simulation, and passed DRC and LVS checks 

where applicable. Timing analysis was performed for critical paths, and extracted delays 

remained within acceptable bounds as defined by the project specifications. 
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